ConspectusEnzymes are the essential catalytic components of biology and adsorbing
redox-active enzymes on electrode surfaces enables the direct probing
of their function. Through standard electrochemical measurements,
catalytic activity, reversibility and stability, potentials of redox-active
cofactors, and interfacial electron transfer rates can be readily
measured. Mechanistic investigations on the high electrocatalytic
rates and selectivity of enzymes may yield inspiration for the design
of synthetic molecular and heterogeneous electrocatalysts. Electrochemical
investigations of enzymes also aid in our understanding of their activity
within their biological environment and why they evolved in their
present structure and function. However, the conventional array of
electrochemical techniques (e.g., voltammetry and chronoamperometry)
alone offers a limited picture of the enzyme–electrode interface.How many enzymes are loaded onto an electrode? In which orientation(s)
are they bound? What fraction is active, and are single or multilayers
formed? Does this static picture change over time, applied voltage,
or chemical environment? How does charge transfer through various
intraprotein cofactors contribute to the overall performance and catalytic
bias? What is the distribution of individual enzyme activities within
an ensemble of active protein films? These are central questions for
the understanding of the enzyme–electrode interface, and a
multidisciplinary approach is required to deliver insightful answers.Complementing standard electrochemical experiments with an orthogonal
set of techniques has recently allowed to provide a more complete
picture of enzyme–electrode systems. Within this framework,
we first discuss a brief history of achievements and challenges in
enzyme electrochemistry. We subsequently describe how the aforementioned
challenges can be overcome by applying advanced electrochemical techniques,
quartz-crystal microbalance measurements, and spectroscopic, namely,
resonance Raman and infrared, analysis. For example, rotating ring
disk electrochemistry permits the simultaneous determination of reaction
kinetics and quantification of generated products. In addition, recording
changes in frequency and dissipation in a quartz crystal microbalance
allows to shed light into enzyme loading, relative orientation, clustering,
and denaturation at the electrode surface. Resonance Raman spectroscopy
yields information on ligation and redox state of enzyme cofactors,
whereas infrared spectroscopy provides insights into active site states
and the protein secondary and tertiary structure. The development
of these emerging methods for the analysis of the enzyme–electrode
interface is the primary focus of this Account. We also take a critical
look at the remaining gaps in our understanding and challenges lying
ahead toward attaining a complete mechanistic picture of the enzyme–electrode
interface.