Metabolic memory refers to the long-term effects of achieving early glycemic control and the adverse implications of high blood glucose levels, including the development and progression of diabetes complications. Our study aimed to investigate whether the phenomenon of metabolic memory plays a role in the immune profile of young patients with uncomplicated type 1 diabetes (T1D). The study group included 67 patients with uncomplicated type 1 diabetes with a mean age of 15.1 ± 2.3 years and a minimum disease duration of 1.2 years. The control group consisted of 27 healthy children and adolescents with a mean age of 15.1 ± 2.3 years. Patients were divided into three groups according to their HbA1c levels at the onset of T1D, and the average HbA1c levels after one and two years of disease duration. The subgroup A1 had the lowest initial HbA1c values, while the subgroup C had the highest initial HbA1c values. Cytokine levels (including TNF-α, IL-35, IL-4, IL-10, IL-18, and IL-12) were measured in all study participants. Our data analysis showed that subgroup A1 was characterized by significantly higher levels of IL-35 and IL-10 compared to all other groups, and significantly higher levels of IL-4 compared to group B. Additionally, a comparative analysis of cytokine levels between the groups of diabetic patients and healthy controls demonstrated that subgroup A1 had significantly higher levels of anti-inflammatory cytokines. The lipid profile was also significantly better in subgroup A1 compared to all other patient groups. Based on our findings, it appears that an inflammatory process, characterized by an imbalance between the pro- and anti-inflammatory cytokines, is associated with poor glycemic control at the onset of diabetes and during the first year of disease duration. These findings also suggest that both metabolic memory and inflammation contribute to the abnormal lipid profile in patients with type 1 diabetes.