The importance of various markers such as Sclerostin, Dickkopf-1 (DKK-1), Irisin, receptor activator of NF-kB ligand (RANKL), and Vitamin D have been well studied in bone metabolism. Additionally, inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and Interleukin 6 (IL-6) have been shown to hinder muscle protein synthesis, leading to the loss of muscle and strength. However, a research gap exists in understanding their role in muscle function and physical activity. Therefore, this study aims to explore the serum levels of Sclerostin, DKK-1, Irisin, IL-6, RANKL, Vitamin D, and TNF-α and assess their relationships with upper- and lower-body strength in young adults. In this study, 38 college-aged students (18–23 years), males and females, participated and completed the protocols. The participants’ lower and upper body strength were assessed by the vertical jump test (Just Jump, Probotic, AL) with a Tendo FitroDyne (Tendo Sports Machines, Trencin, Slovak Republic) and handgrip (HG) dynamometry (Takei Scientific Instruments, Yashiroda, Japan), respectively. Fasting morning blood samples were analyzed for serum levels of biomarkers by ELISA. The results indicate significant sex differences in Sclerostin, DKK-1, Irisin, and Vitamin D levels (p < 0.05). Furthermore, a positive association was observed between Sclerostin, DKK-1, and Vitamin D, with lower body muscle performance variables (p < 0.05). Conversely, a significant negative correlation was observed between TNF-α and lower-body muscle performance variables (p < 0.05). The results suggest that these markers may have a distinct effect on muscle performance, underscoring the need for further investigation to elucidate the concept of muscle–bone crosstalk.