Chronic liver diseases are a serious
health problem worldwide.
One of the frequently reported glycan alterations in liver disease
is aberrant fucosylation, which was suggested as a marker for noninvasive
serologic monitoring. We present a case study that compares site specific
glycoforms of four proteins including haptoglobin, complement factor
H, kininogen-1, and hemopexin isolated from the same patient. Our
exoglycosidase-assisted LC–MS/MS analysis confirms the high
degree of fucosylation of some of the proteins but shows that microheterogeneity
is protein- and site-specific. MSn analysis of permethylated detached
glycans confirms the presence of LeY glycoforms on haptoglobin, which
cannot be detected in hemopexin or complement factor H; all three
proteins carry Lewis and H epitopes. Core fucosylation is detectable
in only trace amounts in haptoglobin but with confidence on hemopexin
and complement factor H, where core fucosylation of the bi-antennary
glycans on select glycopeptides reaches 15–20% intensity. These
protein-specific differences in fucosylation, observed in proteins
isolated from the same patient source, suggest that factors other
than up-regulation of enzymatic activity regulate the microheterogeneity
of glycoforms. This has implications for selection of candidate proteins
for disease monitoring and suggests that site-specific glycoforms
have structural determinants, which could lead to functional consequences
for specific subsets of proteins or their domains.