Reverse T3 (3,3â,5â-triiodothyronine or rT3) is the third most abundant iodothyronine circulating in human blood and is produced by the inner ring de-iodination of the pro-hormone thyroxine (T4). Unlike the more abundant and active metabolite T3, the measurement of serum rT3 is yet to find a routine clinical application. As rT3 binds weakly to the T3 thyroid nuclear hormone receptors it is thought to represent an inactive end-product of thyroid hormone metabolism, diverting T4 away from T3 production. The analysis of serum rT3 has, up until recently, been measured by competitive radioimmunoassay, but these methods have been superseded by mass-spectrometric methods which are less susceptible to interference from other more abundant iodothyronines. Serum rT3 concentration is increased as part of the non-thyroidal illness syndrome, and by administration of common medications such as amiodarone which inhibit the metabolism of rT3. Serum rT3 concentration is also affected by genetic conditions that affect the iodothyronine deiodinases, as well as thyroid transporters and transport proteins. Analysis of rT3 can provide a useful diagnostic fingerprint for these conditions. rT3 has been shown to bind extra-nuclear iodothyronine receptors with a potential role in cell proliferation however the clinical relevance of these findings awaits further study.