2023
DOI: 10.1145/3604939
|View full text |Cite
|
Sign up to set email alerts
|

Server-Client Collaborative Distillation for Federated Reinforcement Learning

Abstract: Federated Learning (FL) learns a global model in a distributional manner, which does not require local clients to share private data. Such merit has drawn lots of attention in the interaction scenarios, where Federated Reinforcement Learning (FRL) emerges as a cross-field research direction focusing on the robust training of agents. Different from FL, the heterogeneity problem in FRL is more challenging, because the data depends on the policy of agents and the environment dynamics. FRL learns to interact under… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 21 publications
0
0
0
Order By: Relevance