The flame tube is an important functional component of burners using the concept of the flame tube stabilised combustion. Under typical combustion conditions the material of the flame tube is exposed to high temperatures (≥900 °C) and to corrosion attack by the combustion gases. Furthermore as the burners are generally operated intermittently, the material suffers from extreme temperature and atmosphere changes. For flame tubes, a lifetime of approximately 8000 h is desired. Predominantly metallic high temperature materials are used. The scope of the present work was to test—under application conditions and for maximum material temperatures exceeding 900 °C—alternative high temperature alloys for use as tube material. The corrosion resistance of the austenitic Ni–Cr‐based alloys (601, 602 CA, 617 and 693) has been investigated in a burner rig at maximum material temperatures of 950 and 1000 °C and with exposure times from 50 to 3000 h. The chromium content of the alloys was between 20 and 30 wt% and that of aluminium between 1 and 3.4 wt%. Metallographic cross‐sections of samples of the alloys were analysed by electron microprobe yielding information about the microstructure and composition of the oxides in the surface zone and variations during exposure time. This study focuses on the observed specific effects of the alloying element aluminium on the development of the oxide scale and on the lifetime of the alloys. At the alloy surface after 500 h exposure time a chromium oxide scale had formed with aluminium oxides underneath predominantly along grain boundaries. For the alloys with the lower aluminium content, the aluminium oxides built up an open network but not a closed layer. For the alloy with the highest aluminium content (alloy 693) after 50 h two different characteristic microstructures at the surface were found. In one case, the grains at the surface were covered with chromium oxide on top and the remaining grain surface was completely enclosed by aluminium oxides. In the other case, the aluminium oxide formed a thin layer directly below the chromium oxide scale. After 500 h exposure time, a significantly thinner chromium oxide scale and massive internal chromium oxides were observed. Catastrophic corrosion, formation of internal oxides and aluminium nitrides started even after 500 h. It will be demonstrated that the early breakdown of alloy 693 is linked to the aluminium oxides which act as a barrier constricting the diffusion of chromium from the alloy matrix towards the surface. Under the conditions of extreme temperature changes given in the burner the aluminium oxide layer on its part did not provide corrosion protection.