Human marine activities are becoming increasingly frequent. The adverse marine environment has led to an increase in man overboard incidents, resulting in significant losses of life and property. After a drowning accident, the accurate location information of the drowning victim can help improve the success rate of rescue. In this paper, we explore a LoRa-based Maritime Position-Indicating Beacon System (LR-MPIBS). A low-power drowning detection circuit is designed in LR-MPIBS to detect drowning accidents in a timely manner after a person falls into the water. The instantaneous high current of the LoRa RF can lower the supply voltage and cause other modules to work abnormally. A fast current transient response circuit is proposed to solve the problem. LR-MPIBS includes a power ripple suppression circuit that can reduce the measurement errors and operational abnormalities caused by power ripple interference. We explore the impedance matching law of LoRa RF circuits through simulation experiments to improve the quality of LoRa communication. A data processing algorithm for personnel drift trajectory is proposed to alleviate the challenges caused by the raw positioning data with large deviations and high communication cost. The experimental results show that LR-MPIBS can automatically start and actively alarm within 3 s after a person falls into the water. The positioning cold start time is less than 50 s. The performance of communication distance is more than 5 km. The endurance of LR-MPIBS is 25 h (with a 30 s communication cycle).