2022
DOI: 10.48550/arxiv.2204.07772
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

SETTI: A Self-supervised Adversarial Malware Detection Architecture in an IoT Environment

Abstract: In recent years, malware detection has become an active research topic in the area of Internet of Things (IoT) security. The principle is to exploit knowledge from large quantities of continuously generated malware. Existing algorithms practise available malware features for IoT devices and lack real-time prediction behaviours. More research is thus required on malware detection to cope with real-time misclassification of the input IoT data. Motivated by this, in this paper we propose an adversarial self-super… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 45 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?