This paper tries to investigate sugarcane bagasse ash (SCBA) as a cement replacement material and its effect on the water consistency, setting times, soundness, specific gravity, water absorption and mortar compressive strength of SCBA-Portland limestone cement (PLC) blend at cement replacement from 0 -15 wt.% at interval of 2.5 wt.%. Calcination of sugarcane bagasse was conducted and the optimum condition was obtained ash at 650°C at 90 mins with a higher Si + Al + Fe content from nine compositional analysis of ashes obtained via X-ray fluorescence spectrometer and then employed as cement replacement material for this research work. The consistency and setting times of the blended cement samples were carried on paste using Vicat apparatus while the soundness, specific gravity and compressive strength using Le Chatelier apparatus, density bottle and strength testing machine respectively according to ASTM standards respectively. Results showed an increase in the water consistency and setting times of SCBA cement pastes as SCBA content was increased from 2.5 -15wt.% which was attributed to unburnt carbon present in the ash due to its high LOI. The elongated setting times could also due to clinker diminution by cement replacement with SCBA and high-water demand. The SCBA cement blends produced accelerated setting time results compared to PLC owing to lime present in SCBA which enhances early hydration. The specific gravity diminished while the volume expansion of the SCBA cement pastes experienced an increase as SCBA was increased due to lower density of SCBA compared to PLC and increased lime content due to increased SCBA content respectively. An increase in the mortar compressive strengths of SCBA cement blends was experienced as the curing days progressed from 3 to 60 days. PLC blended with SCBA produced an enhanced early strength due to the presence of lime which tends to accelerate the rate of formation of hydration assembly. Whereas, at a high cement replacement of 12.5 wt.% SCBA produced exceptional mortar compressive strength especially at 60 days despite clinker diminution indicating pozzolanic activity due to SCBA inclusion. The optimal cement replacement with SCBA was observed at 5 wt.% in comparison with control especially at 28 days and did not adversely affect its strength owing to pozzolanic activity.