Cannabinoids exert a neuroprotective influence on some neurological diseases, including Alzheimer's, Parkinson's, Huntington's, multiple sclerosis and epilepsy. Synthetic cannabinoid receptor agonists/antagonists or compounds can provide symptom relief or control the progression of neurological diseases. However, the molecular mechanism and the effectiveness of these agents in controlling the progression of most of these diseases remain unclear. Cannabinoids may exert effects via a number of mechanisms and interactions with neurotransmitters, neurotropic factors and neuropeptides. Leptin is a peptide hormone involved in the regulation of food intake and energy balance via its actions on specific hypothalamic nuclei. Leptin receptors are widely expressed throughout the brain, especially in the hippocampus, basal ganglia, cortex and cerebellum. Leptin has also shown neuroprotective properties in a number of neurological disorders, such as Parkinson's and Alzheimer's. Therefore, cannabinoid and leptin hold therapeutic potential for neurological diseases. Further elucidation of the molecular mechanisms underlying the effects on these agents may lead to the development of new therapeutic strategies for the treatment of neurological disorders.