To determine whether sevoflurane postconditioning protects against cerebral ischemia reperfusion (I/R) injury and its potential underlying mechanism, we employed bioinformatics, functional enrichment analysis, gene set enrichment analysis, neurological assessments, and western blot analysis, as well as triphenyl tetrazolium chloride, hematoxylin and eosin, Nissl, and immunofluorescence staining. We identified 103 differentially expressed genes induced by cerebral I/R, including 75 upregulated genes and 28 downregulated genes enriched for certain biological processes (involving regulation of inflammatory responses, cellular responses to interleukin 1, and chemokine activity) and signaling pathways (such as transcriptional misregulation in cancer, interleukin-17 signaling, rheumatoid arthritis, MAPK signaling, and Toll-like receptor signaling). Cerebral I/R-induced neurological deficits were comparatively less severe following sevoflurane postconditioning. In addition, TLR4/MyD88/TRAF6 signaling pathway-related proteins and neuropathic damage were ameliorated in aged rats following sevoflurane postconditioning, while the TLR4 agonist lipopolysaccharide aggravated these changes. Together, these findings suggest that sevoflurane postconditioning ameliorates cerebral I/R injury by a mechanism involving inhibition of the TLR4/MyD88/TRAF6 signaling pathway to suppress neuroinflammatory responses.