Telomeres are ribonucleoprotein structures protecting the physical ends of eukaryotic chromosomes. However, telomeric sequences can also occur at non-terminal regions of chromosomes, forming the so-called interstitial telomeric sequences (ITSs). Some ITSs are considered as relics of past chromosomal rearrangements and as such provide important insights into karyotype evolution. By FISH, we explored the distribution of telomeric motifs in the genome of a complex of mammalian species that has long been recognized for its extraordinary karyotypic diversity: the African pygmy mice. This survey involved 5 species, representing 10 highly diverse karyotypes with or without autosomal and sex-autosome robertsonian (Rb) fusions. The study revealed that in species with an ancestral-like karyotype (i.e., no fusions; Mus mattheyi and M. indutus), only terminal telomeres were observed, whereas in species experiencing intense chromosomal evolution (e.g., M. minutoides, M. musculoides), a large amplification of telomeric repeats was also identified in the pericentromeric region of acrocentrics and most metacentrics. We concluded that (i) the mechanism of Rb fusion in the African pygmy mice is different than the one highlighted in the house mouse; (ii) the intensity of the ITS hybridization signal could be a signature of the age of formation of the Rb fusion; (iii) the large amplification of pericentromeric telomeric sequences in acrocentrics may mediate the formation of Rb fusions, and (iv) the ITSs on the sex-autosome fusion Rb(X.1) may participate to the insulation buffer between the sexual and autosomal arms to prevent X inactivation from spreading and silencing autosomal genes and allow the independent regulation of replication timing of both segments.