Background
Airway remodeling is an important pathological feature of chronic airway diseases, which leads to a progressive decline in lung function. The present study examined the anti-remodeling and anti- inflammatory effect of BIBF1000, a triple-tyrosine kinase inhibitor that targets VEGF, PDGF, and FGF receptor signaling in a mouse model of repeated ovalbumin (OVA) challenges.
Methods
Female Balb-c mice were immunized intraperitoneally on days 0 and 12 with 50 µg ovalbumin plus 1 mg of Al(OH)3 in 200 μl saline. Intranasal OVA challenges (20 µg/50 µl in PBS) were administered on days 26, 29, and 31, and were repeated twice a week for 3 months. Animals received vehicle or BIBF1000 (25 mg/kg, b.i.d.) through gavage from day 26 to the end of fourth month. On day 120, bronchoalveolar lavage (BAL) and lung tissue were collected for biochemical and immunohistological analysis.
Results
Compared to vehicle controls, treatment with BIBF1000 reduced the numbers of BAL eosinophils, macrophages, neutrophils, and lymphocytes by 70.0%, 57.9%, 47.5%, and 63.0%, respectively, and reduced IL-5 and IL-13 in BAL. Treatment with BIBF1000 reduced airway mucus secretion, peribronchial fibrosis, small airway, and pulmonary arterial wall thickness, compared to vehicle controls. Furthermore, treatment with BIBF1000 also reduced the expression of inflammatory mediators (TNF-α, IL-1β, IL-5, IL-13, MMP-2, MMP-9, COX-2, and iNOS) and inhibited ERK and AKT phosphorylation.
Conclusions
The protective effect afforded by triple-tyrosine kinase inhibition with BIBF1000 in reducing allergen-induced airway and arterial remodeling was associated with down-regulation of inflammatory mediators, as well as inhibition of ERK and AKT signaling pathways.