“…Based on our findings and those of others, it is tempting to simplify the role of the PVT in reward processing by stating that when activated, the PVT evokes aversive behaviors and when inhibited, the PVT generates behaviors associated with positive reinforcement. However, reward processing encompasses a multitude of complex neural and behavioral functions that are regulated by the PVT, including arousal/wakefulness ( Gent et al, 2018 ; Ren et al, 2018 ; Wang et al, 2021 ; Eacret et al, 2023 ), stress ( Penzo et al, 2015 ; Öz et al, 2017 ; Bengoetxea et al, 2020 ; Dong et al, 2020 ; Yu et al, 2021 ; Corbett et al, 2022a , b ), learning and memory ( Hamlin et al, 2009 ; Li et al, 2011 ; Browning et al, 2014 ; Haight et al, 2015 ; Otis et al, 2017 , 2019 ; Keyes et al, 2020 ), prediction ( Munkhzaya et al, 2020 ), and reinforcement ( Marchant et al, 2010 ; Matzeu et al, 2015 ; Labouèbe et al, 2016 ; Zhang and van den Pol, 2017 ; Cheng et al, 2018 ; Giannotti et al, 2018 , 2021 ; Kuhn et al, 2018 ; Campus et al, 2019 ; Lafferty et al, 2020 ; Matzeu and Martin-Fardon, 2020 ; Chisholm et al, 2021 ; Kessler et al, 2021 ; Vollmer et al, 2022 ; Brown and Chaudhri, 2023 ). Therefore, it is more likely that the role of the PVT in reward processing is nuanced and multifaceted, depending upon the specific stage of reward learning, the type of reward (natural or drug-related), the PVT region (e.g., anterior, middle, posterior), the PVT cell type ( Gao et al, 2023 ), and the brain regions that the PVT interacts with.…”