Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Elevated plasma levels of oxidized low-density lipoprotein (oxLDL) are a risk factor and key component that accelerates and worsens cardiovascular disease fueling inflammation, plaque buildup and vascular damage. OxLDL can elicit its detrimental action via lectin-like oxLDL receptor 1 (LOX-1). In this study, we determined whether oxLDL, via LOX-1, alters aortic vascular reactivity and determined if sex and age differences exist. Thoracic aortic endothelium-intact or -denuded ring segments were isolated from 7 to 12 months old intact C57BL/6J female and male mice and pre-incubated with oxLDL ex vivo (50ug/dL; 2 h). Using wire myography, cumulative concentration-response curves to phenylephrine (PE) were generated to determine contractile responses. From these curves, the EC50 was determined and used to contract rings to assess acetylcholine (ACh) dependent relaxation. Calculated aortic stiffness and remodeling were also assessed. BI-0115 (10 μM; selective LOX-1 inhibitor) was used to determine LOX-1 dependence. We observed differential sex, age, endothelial cell, and LOX-1 dependent alterations to the efficacy of PE-induced contractile responses and ACh-mediated vasorelaxation in thoracic aortic rings following oxLDL exposure. Additionally, we observed a distinct sex and age effect on thoracic aortic stiffness following exposure to oxLDL. There was also a sex effect on calculated vessel diameter, as well as an age effect on oxLDL-mediated aortic remodeling that was LOX-1 dependent. Thus, LOX-1 inhibition and the resulting attenuation of oxLDL/endothelial-mediated alterations in aortic function suggests that there are differential sex differences in the role of oxLDL/LOX-1 in the thoracic aorta of middle-aged male and female mice. NEW and NOTEWORTHY. We investigated the effects of oxLDL via the LOX-1 receptor on murine thoracic aortic vasoreactivity, stiffness, and remodeling across age and sex. Acute exposure to oxLDL led to altered vasoreactivity, endothelial dysfunction, and changes in aortic stiffness and remodeling. These effects were in-part age, sex, endothelial, and LOX-1 dependent. This study reveals potential complex interactions in oxLDL/LOX-1-mediated vascular responses that could serve as potential therapeutic intervention for vascular diseases such as atherosclerosis and stroke.
Elevated plasma levels of oxidized low-density lipoprotein (oxLDL) are a risk factor and key component that accelerates and worsens cardiovascular disease fueling inflammation, plaque buildup and vascular damage. OxLDL can elicit its detrimental action via lectin-like oxLDL receptor 1 (LOX-1). In this study, we determined whether oxLDL, via LOX-1, alters aortic vascular reactivity and determined if sex and age differences exist. Thoracic aortic endothelium-intact or -denuded ring segments were isolated from 7 to 12 months old intact C57BL/6J female and male mice and pre-incubated with oxLDL ex vivo (50ug/dL; 2 h). Using wire myography, cumulative concentration-response curves to phenylephrine (PE) were generated to determine contractile responses. From these curves, the EC50 was determined and used to contract rings to assess acetylcholine (ACh) dependent relaxation. Calculated aortic stiffness and remodeling were also assessed. BI-0115 (10 μM; selective LOX-1 inhibitor) was used to determine LOX-1 dependence. We observed differential sex, age, endothelial cell, and LOX-1 dependent alterations to the efficacy of PE-induced contractile responses and ACh-mediated vasorelaxation in thoracic aortic rings following oxLDL exposure. Additionally, we observed a distinct sex and age effect on thoracic aortic stiffness following exposure to oxLDL. There was also a sex effect on calculated vessel diameter, as well as an age effect on oxLDL-mediated aortic remodeling that was LOX-1 dependent. Thus, LOX-1 inhibition and the resulting attenuation of oxLDL/endothelial-mediated alterations in aortic function suggests that there are differential sex differences in the role of oxLDL/LOX-1 in the thoracic aorta of middle-aged male and female mice. NEW and NOTEWORTHY. We investigated the effects of oxLDL via the LOX-1 receptor on murine thoracic aortic vasoreactivity, stiffness, and remodeling across age and sex. Acute exposure to oxLDL led to altered vasoreactivity, endothelial dysfunction, and changes in aortic stiffness and remodeling. These effects were in-part age, sex, endothelial, and LOX-1 dependent. This study reveals potential complex interactions in oxLDL/LOX-1-mediated vascular responses that could serve as potential therapeutic intervention for vascular diseases such as atherosclerosis and stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.