Relative reproductive success and failure are the ultimate determinants of Darwinian fitness. As such, reproductive traits and variation therein have an immediate and considerable impact on the evolutionary trajectory of lineages. Historically, significant attention has been paid to the ecological and evolutionary processes (ultimate factors) that shape the diversity and canalization of reproductive traits within groups to better our understanding of organismal diversity and population or species resilience. In contrast, the physiological systems that mediate variation within and among species (i.e., the proximate factors) in reproductive traits remain a significant black box. To-date, there is comparatively little information about how proximate mechanisms constrain or promote evolutionary potential in reproductive traits. In this mini-review, we focus on litter size in Eutherian mammals as a trait with relatively well-defined diversity (litter sizes are well-described both within and across species) and for which some genetic determinants have been identified. We discuss both the ultimate and potential proximate determinants of litter size with special attention to the breadth of physiological traits that may act as “toggle” switches for evolution of litter size. We close with a brief discussion of the role that physiological plasticity may play in the evolution of litter size and lay out several forward-looking areas for future research.