We investigated the pathophysiology of diet-induced diabetes in the Cohen diabetic rat (CDs/y) from its induction to its chronic phase, using a multilayered integrated genomic approach. We identified by linkage analysis two diabetes-related quantitative trait loci on RNO4 and RNO13. We determined their functional contribution to diabetes by chromosomal substitution, using congenic and consomic strains. To identify within these loci genes of relevance to diabetes, we sequenced the genome of CDs/y and compared it to 25 other rat strains. Within the RNO4 locus, we detected a novel high-impact deletion in the Ndufa4 gene that was unique to CDs/y. Within the RNO13 locus, we found multiple SNPs and INDELs that were unique to CDs/y, but were unable to prioritize any of the genes. Genome-wide screening identified a third locus not detected by linkage analysis that consisted of a novel high-impact deletion on RNO11 that was unique to CDs/y and involved the Sdf2l1 gene. Using cosegregation analysis, we investigated in silico the relative contribution to the diabetic phenotype and the interaction among the three genomic loci on RNO4, RNO11 and RNO13. We found that the RNO4 locus plays a major role during the induction of diabetes, whereas the genomic loci on RNO13 and RNO11, while interacting with the RNO4 locus, contribute more significantly to the diabetic phenotype during the chronic phase of the disease. The mechanisms whereby the mutations on RNO4 and -11 and the RNO13 locus contribute to the development of diabetes are under continuing investigation.