Meiotic recombination rates and patterns of crossover distributions along the chromosomes vary considerably even between closely related species. The adaptive significance of these differences is still unclear due to the paucity of empirical data. Most data on recombination come from mammalian species, while other vertebrate clades are poorly explored. Using immunolocalization of the protein of the lateral element of the synaptonemal complex (SYCP3) and the mismatch-repair protein MLH1, which marks mature recombination nodules, we analyzed recombination rates and crossover distribution in meiotic prophase chromosomes of the steppe agama (Trapelus sanguinolentus, Agamidae, Acrodonta, Iguania) and compared them with data obtained for the genus Anolis (Dactyloidae, Pleurodonta, Iguania). We found that, despite a smaller genome size, the total SC length and the MLH1 focus number per cell are much higher in the agama than in the anoles. The distributions of the MLH1 foci in the agama are multimodal in larger chromosomes and bimodal in smaller chromosomes without a significant centromere effect, resembling the patterns known for birds. A possible relationship between karyotype remodeling and the evolution of recombination in Iguania is discussed.