Background
The induction of electroconvulsive seizures (ECS) in rodents induces sex- and age-specific disparities in antidepressant-like responses, with females and young age being the most unresponsive ones. Since the electrical charge needed to induce an effective convulsion is also altered by these variables, our aim was to compare different dose-intensities of ECS exclusively in female rats, since there is a lack of preclinical data characterizing this particular sex, while also evaluating efficacy during distinctive age periods of treatment (adolescence vs. adulthood).
Methods
Adolescent and adult female Sprague–Dawley rats were exposed to an intensity dose–response study (55, 75 or 95 mA; 0.6 s, 100 Hz, 1 session/day, 5 days). The particular characteristics of the induced convulsions (tonic, clonic, recovery times) were monitored during treatment. Antidepressant-like responses were evaluated under the stress of the forced-swim test 1-, 3-, and 7-days post-treatment (i.e., improved immobility time as an indicative of an antidepressant-like response), and brains were collected 24 h later (8 days post-treatment) to evaluate potential changes in hippocampal neurogenesis (Ki-67 and NeuroD) by immunohistochemistry.
Results
The lowest intensities tested of ECS (55 and 75 mA) induced an antidepressant-like effect in adult female rats, but rendered insufficient in adolescence. The lack of efficacy observed in adolescent rats paralleled differences in the characteristics of the seizures induced by ECS as compared to adulthood. In line with prior results, different dose-intensities of ECS modulated hippocampal neurogenesis in a comparable fashion with age (i.e., increased survival of neural progenitors 8 days post-treatment).
Conclusions
In conjunction, these results reinforce the importance of fine-tuning the parameters of ECS that might render efficacious while considering sex and age as essential variables for treatment response, and suggest that other molecular mechanisms, beside the partial role of hippocampal neurogenesis, might be participating in the antidepressant-like effects induced by ECS.