The potential for natural genetic transformation among the seven genomovars (gvs) of Pseudomonas stutzeri was investigated. Of the 12 strains originating from a variety of environments, six strains (50 %) from five gvs were competent for DNA uptake (Rif R marker). The transformation frequencies varied over more than three orders of magnitude. With three highly transformable strains (ATCC 17587, ATCC 17641, JM300) from two gvs and all other strains as DNA donors, sexual isolation from other pseudomonad species (Pseudomonas alcaligenes, Pseudomonas mendocina) and also from other P. stutzeri gvs was observed (i.e. heterogamic transformation was reduced). For ATCC 17587 (gv 2) and ATCC 17641 (gv 8), heterogamic transformation was up to two and three orders of magnitude lower with other P. stutzeri gv and the other species employed, respectively, than in homogamic transformations. Interestingly, whereas with ATCC 17587 and ATCC 17641 heterogamic transformation with donors of the same gv was as high as homogamic transformation, JM300 (gv 8) was sexually isolated from its nearest relative (ATCC 17641). Also, sexual isolation of JM300 from other P. stutzeri gvs was most pronounced among the recipients tested, in some cases reaching the highest levels found with the other species as DNA donors (reduction of heterogamic transformation by 4000-fold). Results obtained here from nucleotide sequence analysis of part (422 nt) of the gene for the RNA polymerase β subunit (rpoB) from various strains indicated that sexual isolation of ATCC 17641 increased with nucleotide sequence divergence. Implications of the observed great heterogeneity in transformability, competence levels and sexual isolation among strains are discussed with regard to the evolution of P. stutzeri.