Figure 1: Given a vector graphics drawing, we locally specialize its description to each cell of a lattice, and apply both prefiltering and spatially adaptive supersampling to produce high-quality antialiased renderings over arbitrary surfaces on the GPU.
AbstractWe introduce a novel representation for random-access rendering of antialiased vector graphics on the GPU, along with efficient encoding and rendering algorithms. The representation supports a broad class of vector primitives, including multiple layers of semitransparent filled and stroked shapes, with quadratic outlines and color gradients. Our approach is to create a coarse lattice in which each cell contains a variable-length encoding of the graphics primitives it overlaps. These cell-specialized encodings are interpreted at runtime within a pixel shader. Advantages include localized memory access and the ability to map vector graphics onto arbitrary surfaces, or under arbitrary deformations. Most importantly, we perform both prefiltering and supersampling within a single pixel shader invocation, achieving inter-primitive antialiasing at no added memory bandwidth cost. We present an efficient encoding algorithm, and demonstrate high-quality realtime rendering of complex, real-world examples.