Summary
Shape memory alloys (SMAs) exhibit nearly ideal superelastic properties when the ambient temperature is above the austenite finish temperature, which enables them to recover deformation and dissipate energy for the seismic‐resisting structures. This unique hysteretic properties of SMAs indicate they are very promising in developing self‐centering structures. As such, recent studies installed SMAs in concentrically braced frames (CBFs) to form SMA‐based self‐centering CBFs (SCCBFs) and illustrated that the structures performed excellently with controlled peak drift and eliminated residual drift upon earthquakes. SMAs show variability in the hysteretic parameters due to the difference in metal types, crystallographic structure, component ratios, and heating treatments in producing process. Thus, this necessitates an investigation into the associated effect on the seismic performance of SMA‐based SCCBFs. To this end, this study selects 3 SMAs, proposes a bracing form, and installs SMA braces in the CBFs. Prior to the seismic analysis, all 3 frames are designed by an ad hoc design method. The focus of this paper is to understand the effect of hysteretic properties on the seismic behavior of SMA‐based SCCBFs. Intensive nonlinear time history analyses are carried out to assess the seismic performance of these structures under frequently occurred earthquakes and design basis earthquakes. The analytical results indicate the properly designed SCCBFs are able to meet prescribed performance targets and display comparable seismic demands, irrespective of the SMA types. This study suggests that using SMAs with greater hysteretic parameters is more favorable, from the perspective of saving material consumption and controlling acceleration demands.