The investigation of the evolution of glaciers largely relies on the characterisation of extensive quantities like their mass, area, and perimeter. In this work we use fractal and multifractal analysis to investigate the non-extensive structural properties of the perimeters of glaciers in the Svalbard Archipelago. We show that the perimeters of the glaciers exhibit a fractal structure with a fractal dimension Df ≃ 1.25, independently from the area of the glaciers. The investigation of the multifractal properties of the perimeters shows that small glaciers exhibit a more pronounced multifractal structure, as witnessed by the larger range of generalized dimensions Dq needed to characterise them. The range ΔDq of generalised dimensions required to characterise the multifractal perimeter of a glacier exhibits a power-law dependence with exponent −1.2 from the area, and represents a non-extensive parameter able to grab effectively the dependence of the multifractal structure of the perimeters on the size of glaciers. The comparison with similar results obtained in a previous study performed on glaciers in the Lombardy region of the Italian Alps confirms the robustness of the analysis performed, which does not appear to be affected by the morphology of the substrate or by climate conditions.