Hydrogen incorporation depths of >25 μm were obtained in bulk, single-crystal ZnO during exposure to H2 plasmas for 0.5 h at 300 °C, producing an estimated diffusivity of ∼8×10−10 cm2/V⋅s at this temperature. The activation energy for diffusion was 0.17±0.12 eV, indicating an interstitial mechanism. Subsequent annealing at 500–600 °C was sufficient to evolve all of the hydrogen out of the ZnO, at least to the sensitivity of secondary ion mass spectrometry (<5×1015 cm−3). The thermal stability of hydrogen retention is slightly greater when the hydrogen is incorporated by direct implantation relative to plasma exposure, due to trapping at residual damage in the former case.