An alternative Stokes theory for steady waves in water of constant depth is presented where the expansion parameter is the wave steepness itself. The first step in application requires the solution of one nonlinear equation, rather than two or three simultaneously as has been previously necessary, In addition to the usually specified design parameters of wave height, period and ~ water depth, it is also necessary to specify the current or mass flux to apply any steady wave theory. The reason being that the waves almost always travel on some finite current and the apparent wave period is actually a Dopplershifted period. Most previous theories have ignored this, and their application has been indefinite, if not wrong, at first order. A numerical method for testing theoretical results is proposed, which shows that two existing theories are wrong at fifth order, while the present theory and that of Chappelear are correct. Comparisons with experiments and accurate numerical results show that the present theory is accurate for wavelengths shorter than ten times the water depth.