Summary. Surrogate-based optimization has proven very useful for novel or exploratory design tasks because it offers a global view of the characteristics of the design space, and it enables one to refine the design of experiments, conduct sensitivity analyses, characterize tradeoffs between multiple objectives, and, if necessary, help modify the design space. In this article, a framework is presented for design optimization on problems that involve two or more objectives which may be conflicting in nature. The applicability of the framework is demonstrated using a case study in space propulsion: a response surface-based multi-objective optimization of a radial turbine for an expander cycle-type liquid rocket engine. The surrogate model is combined with a genetic algorithm-based Pareto front construction and can be effective in supporting global sensitivity evaluations. In this case study, due to the lack of established experiences in adopting radial turbines for space propulsion, much of the original design space, generated based on intuitive ideas from the designer, violated established design constraints. Response surfaces were successfully used to define previously unknown feasible design space boundaries. Once a feasible design space was identified, the optimization framework was followed, which led to the construction of the Pareto front using genetic algorithms. The optimization framework was effectively utilized to achieve a substantial performance improvement and to reveal important physics in the design.
IntroductionWith continuing progress in computational simulations, computational-based optimization has proven to be a useful tool in reducing the design process duration and expense. Numerous methods exist for conducting design optimizations. Popular methods include gradient-based methods [4,14], adjoint methods [6,10], and surrogate model-based optimization methods such as the response surface approximation (RSA) [9]. Gradient-based methods rely on a