Networked microgrids (MGs) have several advantages over individual MGs such as reliability improvement and cost reduction. To promote the mutual connection of individual MGs, a rational and predictable profit-sharing rule is required. This study investigates a rule for the fair distribution of profit in networked MGs according to their contributions that come from connecting between them. Cooperative game theory defines profit-sharing problems such as the Nash bargaining solution (NBS) and Shapley value. However, as the two solution concepts are used assuming that the network is complete, they do not account for the positional contribution of each MG in a given network. We propose a variation of the Shapley value designed for an incomplete network, the Myerson value. We investigate how Myerson value-based profitsharing rule can account for both the role and positional contributions of each MG. Using Korean data, we compare the profit distribution results for the three sharing rules (the NBS, Shapley value, and Myerson value). The result confirms that the proposed rule fairly distributes the profit according to one's contribution, even when MGs are incompletely connected.INDEX TERMS Cooperative game theory, Myerson value, Nash bargaining solution (NBS), network structure, networked microgrids, Shapley value.