Common property (CP) is a significant consumer of electricity in apartment buildings. Although some apartments in Australia have adopted shared microgrid configurations to offset grid consumption, the characteristics and load patterns of CP are rarely discussed due to lack of available data. As common areas normally constitute part of owner corporations, energy distribution in these premises requires attention. This paper presents empirical analysis of the CP load connected to shared solar and battery storage for three apartment complexes located in Perth Australia. Load patterns for CP over a defined dataset period were analyzed, and grid usage reduction was examined by implementing and comparing three energy allocation strategies based on surplus energy utilization. The findings indicated significant grid usage reduction for CP load in different apartments after implementation of three strategies. Instantaneous consumption decreased 72%, and surplus allocation strategy reduced 91%, while consumption-based allocation reduced 76%, of grid electricity. Moreover, consumption-based allocation offered improved cost benefits compared to the other two strategies. The results further revealed the usefulness of energy allocation and effectiveness of surplus energy utilization. Based on outcomes, the strategies provide consolidation with conventional energy trading mechanisms and broadly link to the virtual power plant concept for coordinating energy flows between multiple generators.