Abstract. Aggregate statistics computed from time-series data contributed by individual mobile nodes can be very useful for many mobile sensing applications. Since the data from individual node may be privacy-sensitive, the aggregator should only learn the desired statistics without compromising the privacy of each node. To provide strong privacy guarantee, existing approaches add noise to each node's data and allow the aggregator to get a noisy sum aggregate. However, these approaches either have high computation cost, high communication overhead when nodes join and leave, or accumulate a large noise in the sum aggregate which means high aggregation error. In this paper, we propose a scheme for privacy-preserving aggregation of time-series data in presence of untrusted aggregator, which provides differential privacy for the sum aggregate. It leverages a novel ring-based interleaved grouping technique to efficiently deal with dynamic joins and leaves and achieve low aggregation error. Specifically, when a node joins or leaves, only a small number of nodes need to update their cryptographic keys. Also, the nodes only collectively add a small noise to the sum to ensure differential privacy, which is O(1) with respect to the number of nodes. Based on symmetric-key cryptography, our scheme is very efficient in computation.