2022
DOI: 10.3934/dcds.2022140
|View full text |Cite
|
Sign up to set email alerts
|

Sharp Kato smoothing properties of weakly dissipated KdV equations with variable coefficients on a periodic domain

Abstract: <p style='text-indent:20px;'>It is well known that the solutions of the Cauchy problem of the Korteweg-de Vries (KdV) equation on a periodic domain <inline-formula><tex-math id="M1">\begin{document}$ {\mathbb{T}} $\end{document}</tex-math></inline-formula>,</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ u_t +uu_x +u_{xxx} = 0, \quad u(x,0) = \phi (x), \quad x\in {\mathbb{T}}, \ t\in {\mathbb{R}}, $\end{… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?