The wild bootstrap is a nonparametric tool that can be used to estimate a sampling distribution in the presence of heteroscedastic errors. In particular, the wild bootstrap enables us to compute confidence regions for regression parameters under non-i.i.d. models. While the wild bootstrap may perform well in these settings, its obvious drawback is a lack of computational efficiency. The wild bootstrap requires a large number of bootstrap replications, making the use of this tool impractical when dealing with big data. We introduce the analytic wild bootstrap (ANWB), which provides a nonparametric alternative way of constructing confidence regions for regression parameters. The ANWB is superior to the wild bootstrap from a computational standpoint while exhibiting similar finite-sample performance. We report simulation results for both least squares and ridge regression. Additionally, we test the ANWB on a real dataset and compare its performance with that of other standard approaches.