We describe two models of flow in porous media including nonlocal (longrange) diffusion effects. The first model is based on Darcy's law and the pressure is related to the density by an inverse fractional Laplacian operator. We prove existence of solutions that propagate with finite speed. The model has the very interesting property that mass preserving self-similar solutions can be found by solving an elliptic obstacle problem with fractional Laplacian for the pair pressure-density. We use entropy methods to show that they describe the asymptotic behaviour of a wide class of solutions. The second model is more in the spirit of fractional Laplacian flows, but nonlinear. Contrary to usual Porous Medium flows (PME in the sequel), it has infinite speed of propagation. Similarly to them, an L 1 -contraction semigroup is constructed and it depends continuously on the exponent of fractional derivation and the exponent of the nonlinearity.
Nonlinear diffusion and fractional diffusionSince the work by Einstein [39] and Smoluchowski [62] at the beginning of the last century (cf. also Bachelier [9]), we possess an explantation of diffusion and Brownian motion in terms of the heat equation, and in particular of the Laplace operator. This explanation has had an enormous success both in Mathematics and Physics. In the decades that followed, the Laplace operator has been often replaced by more general types of so-called elliptic operators with variable coefficients, and later by nonlinear differential operators; a huge body of theory is now available, both for the evolution equations [49] and for the stationary states, described by elliptic equations of different kinds [50,42].