Sharp Second-Order Hankel Determinants Bounds for Alpha-Convex Functions Connected with Modified Sigmoid Functions
Muhammad Abbas,
Reem K. Alhefthi,
Daniele Ritelli
et al.
Abstract:The study of the Hankel determinant generated by the Maclaurin series of holomorphic functions belonging to particular classes of normalized univalent functions is one of the most significant problems in geometric function theory. Our goal in this study is first to define a family of alpha-convex functions associated with modified sigmoid functions and then to investigate sharp bounds of initial coefficients, Fekete-Szegö inequality, and second-order Hankel determinants. Moreover, we also examine the logarithm… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.