Abstract:Domain Generalization (DG) aims to improve the generalization ability of models trained on a specific group of source domains, enabling them to perform well on new, unseen target domains. Recent studies have shown that methods that converge to smooth optima can enhance the generalization performance of supervised learning tasks such as classification. In this study, we examine the impact of smoothness-enhancing formulations on domain adversarial training, which combines task loss and adversarial loss objective… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.