Structural defects are part of the inherent characteristics of rock masses. They can be found in the form of fishers, joints, and beddings and can be divided into persistent or non-persistent one. The coalescence of non-persistent cracks may lead to the formation of persistent joints under the tensile stress field, leading to instability of rock mass. The mechanical behavior of non-persistent jointed disks under tensile stress has essential implications for rock engineering structures. In this paper, concrete Brazilian disks containing open non-persistent joints were constructed and subjected to diametral loading to investigate the effect of this kind of joint parameters on the tensile strength and stiffness of disks. The effect of some parameters, such as joint continuity factor (the relationship between joint length and rock bridge length), bridge angle, joint spacing, and loading direction with respect to joint angle were investigated to estimate the tensile strength and stiffness as well as failure pattern. The results of experiments revealed that the tensile strength, stiffness, and failure pattern of Brazilian disks are highly affected by non-persistent pre-existing crack parameters. The increase of joint continuity factor and loading direction leads to an increase in tensile strength and a decrease in stiffness. However, when bridge angle and spacing increase tensile strength rises, and the former decreases stiffness while the latter results in its reduction. Finally, all the parameters significantly affect the failure pattern, and some failure patterns such as step-path failure, splitting, or sliding may occur as a function of non-persistent joint parameters.