Tire-Derived Aggregate (TDA) has been used widely in civil engineering applications such as highway embankments, light rail foundations, landslide repairs, and retaining walls as both a recycled material and a lightweight fill. Although the shearing properties of certain types of TDA have been studied, there is still a need for representative and reliable properties of TDA with large particles, such as Type B TDA with particle sizes ranging from 150 to 300 mm. Direct shear tests were performed on Type B TDA using a new large-scale shearing device to measure properties governing internal shear strength as well as interface shear strength against concrete. The internal failure envelope is nonlinear, with a secant friction angle decreasing from 39.6 to 30.2° as the normal stress increased from 19.5 to 76.7 kPa. Negligible shearing rate effects were observed for the internal shear strength of this material. The TDA-concrete interface failure envelope is linear with a friction angle of 22.6°. The dilation angle decreased with increasing normal stress for the TDA internal shear tests, whereas only contraction was observed for the TDA-concrete interface shear tests. Displacements at failure for the TDA internal shear tests ranged from 333 to 439 mm, and were 2 to 3 times larger than those for the TDA-concrete interface shear tests.