In the plasma sheath, there is a significant gradient in ion velocity, resulting in strong stress on ions treated as a fluid. This aspect has often been neglected in previous sheath studies. This study is based on the Braginskii plasma transport theory and establishes a 1D3V sheath fluid model that takes into account the ion stress effect. Under the assumption that ions undergo both electric and diamagnetic drift in the presheath region, self-consistent boundary conditions, including the ion Bohm velocity, are derived based on the property of the Sagdeev pseudopotential. Furthermore, assuming that the electron velocity at the wall follows a truncated Maxwellian distribution, the wall floating potential is calculated, leading to a more accurate sheath thickness estimation. The results show that ion stress significantly reduces the sheath thickness, enhances ion Bohm velocity, wall floating potential, and ion flux at the wall. It hinders the acceleration of ions within the sheath, leading to notable alterations in the particle density profiles within the sheath. Further research indicates that in ion stress, bulk viscous stress has the greatest impact on sheath properties.