Simple SummaryAnticipatory behaviour to an oncoming food reward can be triggered via classical conditioning, implies the activation of neural networks, and may serve to study the emotional state of animals. This work aimed to investigate how the anticipatory response affects cerebral cortex activity in sheep. Eight ewes were conditioned to associate a neutral auditory stimulus (water bubble) to a food reward (maize grains). Then, sheep were trained to wait 15 s before accessing the food (anticipatory phase). Behavioural reaction and changes in cortical oxy-haemoglobin ([ΔO2Hb]) and deoxy-haemoglobin ([ΔHHb]) concentration were recorded by functional near infrared spectroscopy (fNIRS). During the anticipatory phase, sheep increased their active behaviour together with a cortical activation (increase of [ΔO2Hb] and a decrease of [ΔHHb]) compared to baseline. Sheep showed a greater response of the right hemisphere compared to the left hemisphere, possibly indicating frustration. Behavioural and cortical changes observed during anticipation of a food reward reflect a learnt association and an increased arousal, but no clear emotional valence of the sheep subjective experience.AbstractAnticipatory behaviour to an oncoming food reward can be triggered via classical conditioning, implies the activation of neural networks, and may serve to study the emotional state of animals. The aim of this study was to investigate how the anticipatory response to a food reward affects the cerebral cortex activity in sheep. Eight ewes from the same flock were trained to associate a neutral auditory stimulus (water bubble) to the presence of a food reward (maize grains). Once conditioned, sheep were trained to wait 15 s behind a gate before accessing a bucket with food (anticipation phase). For 6 days, sheep were submitted to two sessions of six consecutive trials each. Behavioural reaction was filmed and changes in cortical oxy- and deoxy-hemoglobin concentration ([ΔO2Hb] and [ΔHHb] respectively) following neuronal activation were recorded by functional near infrared spectroscopy (fNIRS). Compared to baseline, during the anticipation phase sheep increased their active behaviour, kept the head oriented to the gate (Wilcoxon’s signed rank test; p ≤ 0.001), and showed more asymmetric ear posture (Wilcoxon’s signed rank test; p ≤ 0.01), most likely reflecting a learnt association and an increased arousal. Results of trial-averaged [ΔO2Hb] and [ΔHHb] within individual sheep showed in almost every sheep a cortical activation during the anticipation phase (Student T-test; p ≤ 0.05). The sheep showed a greater response of the right hemisphere compared to the left hemisphere, possibly indicating a negative affective state, such as frustration. Behavioural and cortical changes observed during anticipation of a food reward reflect a learnt association and an increased arousal, but no clear emotional valence of the sheep subjective experience. Future work should take into consideration possible factors affecting the accurateness of measures, such a...