2022
DOI: 10.1016/j.jfoodeng.2022.111099
|View full text |Cite
|
Sign up to set email alerts
|

Shelf life predictive model for postharvest shiitake mushrooms

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0
1

Year Published

2023
2023
2025
2025

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 21 publications
(6 citation statements)
references
References 32 publications
0
5
0
1
Order By: Relevance
“…Zhao et al (2022) melaporkan bahwa perubahan susut bobot produk segar dapat dianalisa dan diprediksi dengan menggunakan persamaan kinetika dan Arrhenius. Li et al (2022) juga melaporkan bahwa perubahan tekstur, kadar air, dan susut bobot dapat dianalisa dengan menggunakan persamaan kinetika dan Arrhenius. Penelitian dengan dua variasi perlakuan dapat dianalisa lebih lanjut dengan menggunakan analisis regresi polinomial orde kedua.…”
Section: Pendahuluan Latar Belakangunclassified
“…Zhao et al (2022) melaporkan bahwa perubahan susut bobot produk segar dapat dianalisa dan diprediksi dengan menggunakan persamaan kinetika dan Arrhenius. Li et al (2022) juga melaporkan bahwa perubahan tekstur, kadar air, dan susut bobot dapat dianalisa dengan menggunakan persamaan kinetika dan Arrhenius. Penelitian dengan dua variasi perlakuan dapat dianalisa lebih lanjut dengan menggunakan analisis regresi polinomial orde kedua.…”
Section: Pendahuluan Latar Belakangunclassified
“…This methodology is briefly described in Figure 1. Thenceforth, shelf-life methodologies that use PCA proved to be efficient in identifying and selecting attributes that directly influence food degradation [11,[17][18][19][20][21][22][23][24][25][26][27].…”
Section: Principal Components Analysis (Pca)mentioning
confidence: 99%
“…OPLS-DA has emerged as a valuable technique in shelf-life studies, particularly for identifying significant patterns under various storage and processing conditions. Thenceforth, shelf-life methodologies that use PCA proved to be efficient in identifying and selecting attributes that directly influence food degradation [11,[17][18][19][20][21][22][23][24][25][26][27].…”
Section: Orthogonal Projections To Latent Structures-discriminant Ana...mentioning
confidence: 99%
“…The Arrhenius model is the most widely used equation for describing the kinetics of quality change with temperature. The combination of a kinetic model based on the reaction order (e.g., zeroth-, first-, and second-order) and the Arrhenius model has previously been applied for shelf-life prediction (Li et al, 2022a). Among the parameters, cellulose and PC1 scores showed an acceptable fit (R 2 >0.8).…”
Section: Kinetic Analysis and Accelerated Shelf-life Testing For Shel...mentioning
confidence: 99%
“…Accelerated shelf-life testing (ASLT) has been widely used to estimate the shelf-life of food. ASLT is usually performed using the Arrhenius equation, which describes the relationship between temperature and reaction rate during storage (Li et al, 2022a;Zhao et al, 2022). However, the results of ASLT may differ based on the quality attributes selected, since it involves only one quality attribute.…”
Section: Introductionmentioning
confidence: 99%