1. Automated, ship-board flow cytometers provide high-resolution maps of phytoplankton composition over large swaths of the world's oceans. They therefore pave the way for understanding how environmental conditions shape community structure. Identification of community changes along a cruise transect commonly segments the data into distinct regions. However, existing segmentation methods are generally not applicable to flow cytometry data, as this data is recorded as "point cloud" data, with hundreds or thousands of particles measured during each time interval. Moreover, nonparametric segmentation methods that do not rely on prior knowledge of the number of species are desirable to map community shifts.2. We present CytoSegmenter, a kernel-based change-point estimation method for segmenting point cloud data. Our method allows us to represent and summarize a point cloud of data points by a single element in a Hilbert space. The change-point locations can be found using a fast dynamic programming algorithm.
3.Through an analysis of 12 cruises, we demonstrate that CytoSegmenter allows us to locate abrupt changes in phytoplankton community structure. We show that the changes in community structure generally coincide with changes in the temperature and salinity of the ocean. We also illustrate how the main parameter of CytoSegmenter can be easily calibrated using limited auxiliary annotated data.
1
Accepted Article
Methods in Ecology and EvolutionThis article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as