Metal acetylacetonates are coordination complexes of metal ions and the acetylacetonate anion with diverse uses including catalysts, cross-linking agents and adhesion promotors. Some metal acetylacetonates can photostabilize polymers whereas others are photocatalysts. We hypothesize that the ability of metal acetylacetonates to photostabilize wood will vary depending on the metal in the coordination complex. We test this hypothesis by treating yellow cedar veneers with different acetylacetonates (Co, Cr, Fe, Mn, Ni, and Ti), exposing veneers to natural weathering in Australia, and measuring changes in properties of treated veneers. The most effective treatments were also tested on yellow cedar panels exposed to the weather in Vancouver, Canada. Nickel, manganese, and titanium acetylacetonates were able to restrict weight and tensile strength losses and delignification of wood veneers during natural weathering. Titanium acetylacetonate was as effective as a reactive UV absorber at reducing the greying of panels exposed to 6 months of natural weathering, and both titanium and manganese acetylacetonates reduced the photo-discoloration of panels finished with a polyurethane coating. We conclude that the effectiveness of metal acetylacetonates at photostabilizing wood varies depending on the metal in the coordination complex, and titanium and manganese acetylacetonate show promise as photoprotective primers for wood.