Abstract-An efficient and accurate hybrid model has been developed for the electromagnetic leakage from two apertured cascaded metallic rectangular enclosures connected by a metallic plate with an aperture covered by a non-magnetic conductive sheet excited by an electric dipole located in the enclosure. The leakage fields through the covered aperture are derived by using the dyadic Green's function and employing the approximate boundary conditions at both sides of the sheet which is regarded as an infinite conductive plate. Then, the leakage fields into the external space through the aperture regardless of its thickness at the end of the enclosure are derived based on a generalization of the method of moments (MoM). Finally, the shielding effectiveness (SE) at the target points outside the enclosure is calculated for the intermediate analysis of the leakage fields. Comparison with the full wave simulation software CST has verified the model over a wide frequency band. The hybrid model then is employed to analyze the effect of different factors including the thickness and the conductivity of the conductive sheet on the SE, and the corresponding physical mechanisms of the leakage fields are also illuminated. The hybrid model can also be extended to deal with other cases, including the whole plate made of non-magnetic conductive material without apertures, the infinite thickness of the aperture at the end of the enclosure, and the aperture at the end of the enclosure also covered by a non-magnetic conductive sheet.