BACKGROUND: The psychological profile of patients with borderline personality disorder (BPD), with impulsivity and emotional dysregulation as core symptoms, has guided the search for abnormalities in specific brain areas such as the hippocampal-amygdala complex and the frontomedial cortex. However, whole-brain imaging studies so far have delivered highly heterogeneous results involving different brain locations. METHODS: Functional resting-state and diffusion magnetic resonance imaging data were acquired in patients with BPD and in an equal number of matched control subjects (n 5 60 for resting and n 5 43 for diffusion). While mean diffusivity and fractional anisotropy brain images were generated from diffusion data, amplitude of low-frequency fluctuations and global brain connectivity images were used for the first time to evaluate BPD-related brain abnormalities from resting functional acquisitions. RESULTS: Whole-brain analyses using a p 5 .05 corrected threshold showed a convergence of alterations in BPD patients in genual and perigenual structures, with frontal white matter fractional anisotropy abnormalities partially encircling areas of increased mean diffusivity and global brain connectivity. Additionally, a cluster of enlarged amplitude of low-frequency fluctuations (high resting activity) was found involving part of the left hippocampus and amygdala. In turn, this cluster showed increased resting functional connectivity with the anterior cingulate. CONCLUSIONS: With a multimodal approach and without using a priori selected regions, we prove that structural and functional abnormality in BPD involves both temporolimbic and frontomedial structures as well as their connectivity. These structures have been previously related to behavioral and clinical symptoms in patients with BPD.