W ith accelerating changes in climatic conditions in agricultural regions deemed globally important for maintaining the food security of humankind, plant breeders have increasingly turned to crop wild relatives (CWR) to address heightened abiotic and biotic stress now affecting food crops (Ceccarelli et al., 2010;Dempewolf et al., 2017;Zhang et al., 2017a). As a subset of plant genetic resources for food and agriculture (PGRFA), a CWR is defined as a "wild plant taxon that has an indirect use derived from its relatively close genetic relationship to a crop" (Ford-Lloyd et al., 2011).Crop wild relatives can be useful as breeding materials, rootstock, biomimicry analogs to improve crop resistance and tolerance to biotic and abiotic stressors (Dempewolf et al., 2017;Zhang et al., 2017a), or as resilient alternatives to conventional crops (Nabhan and Felger, 1985;Bharucha and Pretty, 2010). Their traits may augment the drought, heat, and salinity tolerance found in land races or cultivars to improve growth and yield in arid landscapes. Some strategies for their use include matching crop phenology to seasonal moisture availability, improving water use efficiency, shifting root/shoot ratios, selecting to escape or avoid stress in critical periods of crop life cycles, and evaluating secondary compounds or morphological features to reduce biotic or abiotic stress (