The application of nitrogen fertilizer is crucial in the cultivation of bamboo forests, and comprehending the alterations in soil organic carbon (SOC) due to nitrogen application is essential for monitoring soil quality. Predicting the dynamics of soil carbon stock involves analyzing two components: particulate organic carbon (POC) and mineral-associated organic carbon (MAOC). This study aimed to investigate the impact of high nitrogen inputs on SOC stock in Moso bamboo forests located in southwestern China. The research focused on analyzing changes in soil chemical properties, SOC content, and its components (POC and MAOC), as well as microbial biomass in the surface layer (0–10 cm) under different nitrogen applications (0, 242, 484, and 726 kg N ha−1 yr−1). The results indicate that nitrogen application significantly reduced the SOC content, while concurrently causing a significant increase in POC content and a decrease in MAOC content within the Moso bamboo forest (p < 0.05). The HM treatment notably increased the NO3−-N content to 2.15 mg/kg and decreased the NH4+-N content to 11.29 mg/kg, although it did not significantly influence the microbial biomass carbon (MBC) and nitrogen (MBN). The LN and MN treatments significantly reduced the MBC and MBN contents (71.6% and 70.8%, 62.5% and 56.8%). Nitrogen application significantly increased the Na+ concentration, with a peak observed under the LN treatment (135.94 mg/kg, p < 0.05). The MN treatment significantly increased the concentrations of Fe3+ and Al3+ (p < 0.05), whereas nitrogen application did not significantly affect Ca2+, Mg2+ concentration, and cation exchange capacity (p > 0.05). Correlation and redundancy analyses (RDAs) revealed that the increase in annual litterfall did not significantly correlate with the rise in POC, and changes in extractable cations were not significantly correlated with the decrease in MAOC. Soil nitrogen availability, MBC, and MBN were identified as the primary factors affecting POC and MAOC content. In conclusion, the application of nitrogen has a detrimental impact on the soil organic carbon (SOC) of Moso bamboo forests. Consequently, it is imperative to regulate fertilization levels in order to preserve soil quality when managing these forests. Our research offers a theoretical foundation for comprehending and forecasting alterations in soil carbon stocks within bamboo forest ecosystems, thereby bolstering the sustainable management of Moso bamboo forests.