Freshwater whitefishes, Salmonidae Coregoninae, are cold stenothermic fishes of ecological and socio-economic importance in northern hemisphere lakes that are warming in response to climate change. To address the effect of warming waters on coregonine reproduction we experimentally evaluated different embryo incubation temperatures on post-hatching survival, growth, and critical thermal maximum of larval cisco (Coregonus artedi) sampled from lakes Superior and Ontario. Embryos were incubated at water temperatures of 2.0, 4.4, 6.9, and 8.9C to simulate present and increased winter temperatures, and hatched larvae were reared in a common environment. For both populations, larval survival and critical thermal maximum were negatively related to incubation temperature, and larval growth was positively related to incubation temperature. The magnitude of change across incubation temperatures was greater in the population sampled from Lake Superior than Lake Ontario for all traits examined. The more rapid decrease in survival and critical thermal maximum across incubation temperatures for larval cisco in Lake Superior, compared to those from Lake Ontario, suggests that Lake Superior larvae may possess a more limited ability to acclimate to and cope with increasing winter water temperatures. However, the rapid increase in growth rates across incubation temperatures in Lake Superior larvae suggests they could recover better from hatching at a small length induced by warm winters, as compared to Lake Ontario larvae. Our results suggest propagation and restoration programs may want to consider integrating natural habitat preferences and maximizing phenotypic variability to ensure offspring are set up for success upon stocking.