In this work, we have demonstrated the use of Fiber Bragg Grating (FBG) sensors for simultaneous measurement of wall static pressure and temperature in a supersonic ejector. Supersonic ejectors are ground based high speed aerodynamic test facilities characterized by harsh conditions such as high pressure and temperature gradients. FBG based sensor setup was developed consisting of pressure measuring bare FBG and specially designed pressure-insensitive FBG temperature probe that could be mounted on the wall of the supersonic ejector. The FBG temperature probe was used for temperature measurement as well as temperature compensation of pressure measuring FBG sensor. Wall static pressure measurements in the supersonic ejector were carried out at different tank pressures and Mach number flows. The FBG pressure measurements were validated with that of standard piezoresistive based sensor measurements. Both the responses were found to match closely with FBG sensor having a faster response time and higher pressure resolution. Fluid structure interaction simulation was carried out in Comsol Multiphysics to understand the interaction of high speed turbulent flow on the fiber based FBG sensor. The FBG strain profile due to flow-induced stress and its dependence on flow pressure was studied. A detailed analysis of effect of preceding fiber length on FBG pressure measurement was carried out. FBG sensors, owing to their miniature size, ability to withstand harsh environments and multi parameter sensing capability can be used in ground-based aerodynamic test facilities with minimum intrusion to the flow.