The growing obesity epidemic necessitates increased research on adipocyte and adipose tissue function and disease mechanisms that progress obesity. Historically, adipocytes were viewed simply as storage for excess energy. However, recent studies have demonstrated that adipocytes play a critical role in whole-body homeostasis, are involved in cell communication, experience forces in vivo, and respond to mechanical stimuli. Changes to the adipocyte mechanical microenvironment can affect function and, in some cases, contribute to disease. The aim of this review is to summarize the current literature on the mechanobiology of adipocytes. We reviewed over 100 papers on how mechanical stress is sensed by the adipocyte, the effects on cell behavior, and the use of cell culture scaffolds, particularly those with tunable stiffness, to study adipocyte behavior, adipose cell and tissue mechanical properties, and computational models. From our review, we conclude that adipocytes are responsive to mechanical stimuli, cell function and adipogenesis can be dictated by the mechanical environment, the measurement of mechanical properties is highly dependent on testing methods, and current modeling practices use many different approaches to recapitulate the complex behavior of adipocytes and adipose tissue. This review is intended to aid future studies by summarizing the current literature on adipocyte mechanobiology.