Atherosclerosis is a chronic degenerative disorder characterized by lipid-dense plaques and low-grade inflammation affecting arterial walls. Foamy macrophages are important in the formation of atherosclerotic plaques and the induction of low-grade inflammation. The presence of lipid-laden macrophages has occurred in infections caused by opportunistic pathogens. Candida albicans is the major cause of candidiasis in immunocompromised patients, including those with diabetes mellitus. However, the role played by C. albicans in macrophage foaming and the associated inflammation is poorly understood. We investigated whether C. albicans induces foaming along with inflammation in macrophages and, if so, by which mechanism(s). We incubated THP-1 macrophages with heat-killed C. albicans (HKCA). HKCA-induced lipid accumulation in macrophages along with increased expression of inflammatory markers, including CD11b and CD11c or expression and secretion of IL-1β. HKCA also increased the expression of PPARγ, CD36, and FABP4 in macrophages. Mechanistically, we found that the foamy and inflammatory macrophage phenotype induced by HKCA requires FABP4 because disruption of FABP4 in macrophages either by chemical inhibitor BMS309404 or small interfering RNA (siRNA) abrogated foam cell formation and expression of inflammatory markers CD11b, CD11c, and IL-1β. Furthermore, HKCA-treated macrophages displayed high expression and secretion of MMP-9. Inhibition of FABP4 resulted in suppression of HCKA-induced MMP-9 production. Overall, our results demonstrate that C. albicans induces foam cell formation, inflammation, and MMP-9 expression in macrophages via the upregulation of FABP4, which may constitute a novel therapeutic target for treating C. albicans-induced atherosclerosis.